
Deep Learning for Predictive Maintenance in
Impoundment Hydropower Plants

Maxime Rutagarama

Ecole polytechnique fédérale de Lausanne
Laboratory of Artificial Intelligence

Supervisor: Prof. Boi Faltings

Alpiq AG
Asset Management Support
Supervisor: Nicolas Rouge

This dissertation is submitted for the degree of
Master in Computer Science

March 2019

Abstract

Predictive maintenance aims to anticipate industrial system failures in order to optimize
maintenance schedules, and thus the ratio between expenses and revenues. This approach is
particularly interesting for the hydroelectric production sector, due to its inherent heavy costs
and challenges. By using machine learning, and in particular deep learning, to understand the
behaviour of machines using data collected by the sensors, we are able to automatically detect
early warning signs of potential failures. Given the lack of incident data, it is preferable to
apply semi-supervised learning methods, which learn to identify the normal behaviour of
the system, and then identify anomalies. By explicitly simulating the expected behaviour
of the machines, it will even be possible to obtain interpretable predictions, which allows
the operator to identify the source of the problem and act accordingly. Although this work
focuses on hydropower plants, it is intended to establish a predictive maintenance framework
applicable to all industries.

Table of contents

1 Introduction: Impoundment Hydropower Plants Need Smart Maintenance 1
1.1 The criticality of hydropower plants . 1
1.2 From corrective maintenance to predictive maintenance 3
1.3 Machine learning for predictive maintenance 4
1.4 Document structure . 5

2 Theory: Machine Learning for Predictive Maintenance 7
2.1 Problem framing . 7

2.1.1 Limitations of supervised learning 7
2.1.2 Predictive maintenance as a semi-supervised anomaly detection task 9
2.1.3 Classical algorithms for semi-supervised anomaly detection 10

2.2 Semi-supervised deep learning for predictive maintenance 15
2.2.1 An overview of Deep Learning . 15
2.2.2 Autoencoders . 20
2.2.3 Forecasting-based anomaly detection 21
2.2.4 Prediction intervals to replace thresholds 22

3 Practice: Predictive Maintenance in Hydropower Plants 25
3.1 Introduction . 25
3.2 FMHL+ power plant . 26

3.2.1 Data-set and methods . 27
3.2.2 Results . 28

3.3 Bieudron power plant . 30
3.3.1 Data-set and methods . 30
3.3.2 Results . 30

4 Conclusion and Future Work 39

References 41

vi Table of contents

Appendix A How neural network actually learn 45

Appendix B Power plant plans 47

Chapter 1

Introduction:
Impoundment Hydropower Plants Need
Smart Maintenance

Since the early 2010’s, the industrial sector has the will to digitize itself, and to integrate
the latest advances in data analysis and machine learning, to improve efficiency and reduce
costs. This is included in the scope of what is called Industry 4.0, that is, the fourth industrial
revolution after mechanization in 1784, electrical power along with mass production in 1870,
and automated production in 1969. Most of the industrial machines are equipped with sensors
and their data are collected on servers, forming the Industrial Internet of Things (IIoT). With
this new paradigm come a multitude of new possibilities to optimize the functioning of
industrial facilities, and in particular maintenance programs. As a heavy industry requiring
complex and critical machinery, the field of hydroelectricity is no exception.

1.1 The criticality of hydropower plants

Hydropower is the world’s leading renewable energy source. It uses the movement of water
as an energy source in the following way: water is captured and sent to a turbine, which
converts its kinetic energy into mechanical energy, then a generator converts this mechanical
energy into electrical energy.

When the facility has no storage capacity and turbines the water as it comes naturally, it
is called a run-of-river power plant.

Conversely, a hydropower plant is called an impoundment facility if it uses a dam to store
water in a reservoir. The purpose of this type of facility is to store energy in the form of water

2 Introduction: Impoundment Hydropower Plants Need Smart Maintenance

that can be transformed into electricity at the right time. The stored water can be released at
any time into a pipe that leads to a factory below. Its potential energy is then transformed
into kinetic energy so that it hits the turbine with high speed. .

Some impoundment hydropower plants allow water to be pumped into the storage
reservoir from a lower reservoir: these are pumped-storage plants. The goal of these facilities
is to pump water when energy demand is low, so that it can be turbined later to produce
energy when demand is high. The operation of a classical impoundment plant and of a
pumped-storage plant are shown respectively in Figure 1.1a and Figure 1.1b.

Reservoir

Power plant

3

4

1

2

4

3

2

1 Dam

Penstock

Turbine

Generator

(a) Classical impoundment plant

Upper reservoir

Power plant

4

5

1

2

4

3

2

1 Dam

Penstock

Pump

Turbine

3

Lower reservoir

5 Generator / Motor

(b) Pumped-storage plant

Fig. 1.1 Operation of impoundment hydropower plants.

1.2 From corrective maintenance to predictive maintenance 3

The issues related to hydropower plants are multiple and crucial, which is why it is
necessary to ensure their proper functioning as much as possible. On the one hand, incidents
that make power plants unavailable can have a significant economic impact, due to the
importance of hydroelectric production in the energy panel. On the other hand, the most
critical incidents can be catastrophic for the environment and people. Maintenance is
therefore a fundamental task. However, since machines are very heavy and expensive, and
unavailability is costly, maintenance operations must be planned in the smartest way possible.
This is all the more true for impoundment facilities, since the stress on the machines is
irregular over time and their fatigue is therefore more difficult to anticipate than that of
run-of-river plants. That is why in this work we only considered impoundment facilities
although the discussed methods are also valid for other types of power plants.

For more information on the hydropower domain as a whole, one can refer to [23] for
a book in english, [25] for a book in french, or [7] for a more technical reference book in
German.

1.2 From corrective maintenance to predictive
maintenance

According to the norm NF EN 13306 X 60-319, maintenance is the "combination of all
technical, administrative and managerial actions during the life cycle of an item intended to
retain it in, or restore it to, a state in which it can perform the required function." These actions
aim to ensure the reliability of machines but they have a cost: this is the cost/reliability trade-
off. Hence, it is crucial to perform smart maintenance plans, trying to maximize machines
reliability while minimizing maintenance costs. That is why industry opts increasingly for
smarter maintenance strategies.

Corrective maintenance. Maintenance is considered corrective if it is "carried out after
fault recognition" (NF EN 13306 X 60-319). This strategy minimizes the maintenance costs
since actions are most of the time carried out only when a failure occurs, that is when the
machine is unable to perform a required function. On the other hand, it does not ensure well
machines reliability because nothing is done to prevent failures to occur.

Preventive maintenance. In order to be proactive and to act before a failure occurs, one can
choose to perform preventive maintenance, that is maintenance "carried out at predetermined
intervals or according to prescribed criteria" (NF EN 13306 X 60-319). For example, periodic
maintenance improves reliability but implies recurrent costs that are not always necessary.

4 Introduction: Impoundment Hydropower Plants Need Smart Maintenance

Predictive maintenance. The best option would be to perform maintenance operations
only when the machine really needs it, that is when a failure is likely to occur. That is the
idea of predictive maintenance, which is a strategy of maintenance "carried out following
a forecast derived from the analysis and evaluation of the significant parameters of the
degradation of the item" (NF EN 13306 X 60-319). By analyzing machines data, we should
be able to evaluate and predict the evolution of their state, in order to act accordingly.

A first step for predictive maintenance is to set threshold to trigger alarms on sensors or
combinations of sensors. But we could analyze the data much more finely and trigger smarter
alarms, which capture problems that are indistinguishable with simple thresholds. Some
papers already present methods for predictive maintenance in hydropower plants ([35], [34],
[22]), but our goal is to offer solutions using the latest technologies in machine learning.

1.3 Machine learning for predictive maintenance

As seen previously, predictive maintenance consists in the evaluation of a system’s state
based on significant data. The goal is to predict this state automatically, and at this time, the
most efficient tool to perform prediction from observed data is undeniably machine learning.

Machine learning is a branch of artificial intelligence that uses statistical approaches to
give computers the ability to learn from data. Since this document is also intended to serve
asset managers that are not necessarily familiar with machine learning and computer science,
we will try not to take too much for granted. To have a good comprehension of the field, we
recommend reading [1], which is a reference for machine learning.

In the case of predictive maintenance, the main source of data is time series coming from
machines sensors. A time series is a series of numerical values representing the evolution of
a specific quantity over time. Formally, it takes the form of a set {x(t)}t∈T , in which each
element is a vector of Q measurements. If the current time is T , the idea is to learn from
past observations {x(t)}t≤T in order to evaluate the system’s state when new measurements
{x(t)}t>T are available. The various possible approaches will be described and explored in
the second chapter of this report.

Machine learning is a very powerful tool that is being used in every industry domains,
but it has some drawbacks. Unlike physical models, machine learning models are based
solely on data and therefore tend to be black boxes. A machine learning model will in most
cases only give a prediction, but will not explain it. This is not enough for many real-world
industrial applications, especially when it comes to security [4].

When the algorithm outputs an alarm, the person in charge of the machine has to act
accordingly, which is very difficult if the source of the problem is unknown. For this reason,

1.4 Document structure 5

it is essential that the model provide insights on the nature of the problem. In addition, the
interpretability of a model is the main key to a successful production launch. Indeed, the
model will be much more accepted if its predictions are understandable, that is if users are
able to see logic in them. In addition, it is much easier to debug or audit a model if it is
interpretable. Hence, developing interpretability ensures better reliability and robustness and
helps building trust, but it forces us to think beyond the usual performance indicators, to
empathize with the user, and to choose carefully the methods and model architectures used.
This will be one of the main challenges of this work.

1.4 Document structure

The second chapter will focus on the theory behind the machine learning methods for
predictive maintenance. We will describe, explain and evaluate available approaches.

In the third chapter, we will apply the methods described previously to real data provided
by the Swiss energy company Alpiq. We will train different models and show how they act
on normal behaviors, along with anomalies and failures data. Each method’s effectiveness
will be evaluated according to several criteria, taking into account their performance, but also
their relevance in an operational industrial environment, notably through their interpretability.

Finally, in the fourth and last chapter, we will draw conclusions from the experiences of
this project.

Chapter 2

Theory:
Machine Learning for Predictive
Maintenance

The purpose of this chapter is to explain the machine learning concepts and methods used in
this project. The chapter begins with an overview of available machine learning approaches
for predictive maintenance. We discuss which approach we chose over the others for our
case, that is for impoundment hydropower plants, and motivate our choice. We then present
classical algorithms to implement this approach and discuss their efficiency. Finally, we
introduce deep learning and its application to predictive maintenance, which are the methods
we have focused on during this project.

2.1 Problem framing

From now, we will consider the following setup. Let {ut}T
t=1, ut ∈ RQ be a time series

gathering past sensors measurements of an industrial system, collected on a regular time
interval. Our goal is to predict, given continuously incoming new measurements {ut}t>T ,
if a failure is likely to happen, or at least to detect potential harbingers of a failure. This
problem can be framed in various ways, which we will describe below.

2.1.1 Limitations of supervised learning

An intuitive way to proceed would be to use the most common approach in machine learning,
namely supervised learning. By observing exemplary functioning cases and failure cases, an
algorithm could learn to distinguish between risky behaviours and normal behaviours.

8 Theory: Machine Learning for Predictive Maintenance

A task is said to be supervised when data is provided as pairs of inputs and desired
outputs, called labels. Given a set X = {(x(i), y(i))}N

i=1, where x(i) ∈ RQ are the inputs and
y(i) ∈ RD the labels, a supervised learning algorithm will try to approximate the relation
y(i) = f(x(i)) ∀i ∈ [N]. In the case of predictive maintenance, the labels should naturally
come from the observed cases of failure.

Let us say that we observed K failures, that happened at times {t1, . . . , tK}, and suppose
that harbingers generally show up within the F time steps preceding a failure. We could
frame the problem as asking the question "will the system fail in the next F time steps ?"
like in [16]. The labels are then:

y(t) =

1, if ∃ i such that 0 ≤ ti − t ≤ F,

0, otherwise.
(2.1)

Another way to proceed would be to predict the actual time before the next failure, also
called the remaining useful life (RUL) [10]. This is a supervised regression task where the
labels are set as y(t) = ti − t, where i = min{j : tj > t}.

Then, one only has to use any supervised learning algorithm such as SVM, random forests,
or neural networks, to learn the relation between the inputs x(t) := ut and the labels y(t). In
order to detect defective behaviours observable over time, and not punctually, it is necessary
to consider sequences as input to the model, and no longer only punctual measurements.
Thus we can instead use as inputs sub-sequences of size S, such that x(t) = (us)t+S−1

s=t
1. This

method, called sliding window, is illustrated in Figure 2.1.

u1 u2 u3 u4 u5 u6 u7 u8 · · · uT

x(1)

u1 u2 u3 u4 u5 u6 u7 u8 · · · uT

x(2)

u1 u2 u3 u4 u5 u6 u7 u8 · · · uT

x(3)

Fig. 2.1 Sliding window method

1If that produces too much sequences to process, one can introduce a stride value R, and take only one out
of R consecutive sequences.

2.1 Problem framing 9

The drawbacks of these supervised approaches are on one hand that all data have to be
labelled, and on another hand that we need enough examples of each possible behaviour to
allow proper training. Unfortunately, in the case of predictive maintenance, this is often not
the case. In particular, in hydropower plants, even if failures are all identified and labelled as
such, they are happily rare, and they appear to be most of the time very different from one
another. This is why supervised learning is not appropriate in our case. We would rather use
other approaches to address the problem of unbalanced data and the diversity of failure cases.

2.1.2 Predictive maintenance as a semi-supervised anomaly detection
task

Since it is difficult to learn to identify all possible cases of failure with the available data,
the problem can be viewed from a different perspective. The idea is to model the normal
behaviour of the system and detect behaviours that deviate too much from it [6]. This is
called a semi-supervised learning task since we use data from one class only, that is the
normal behaviours samples. The goal is no longer to predict failures, but to detect anomalies
and trigger an alarm as these are potentially early signs of a failure. Hence we frame the
problem as an anomaly detection task.

More specifically, we want to detect anomalies in a multivariate time series, which is
a problem that has been widely studied. The first step is to ask ourselves what should be
called an anomaly. Generally, anomalies in time series are divided according to two criteria
[2]. First of all, an anomaly can be punctual or collective, depending on whether it concerns
only one observation at a given time, or on the contrary a sequence of observations. Then,
an anomaly can be global, if it concerns outliers with respect to the whole time series, or it
can be contextual, if the values are incoherent at the scale of a certain neighbourhood only.
These two criteria can be combined, and the major challenge is to detect contextual collective
anomalies, which are often the most subtle but also the most relevant. Figure 2.2 shows the
four possible types of time series anomalies that we just discussed. Note that these graphs
show sequences of dimension one, whereas we usually look at multidimensional time series,
but the principle remains the same.

10 Theory: Machine Learning for Predictive Maintenance

0 10 20 30

−1

0

1

2

(a) Point anomaly

0 10 20 30

−1

0

1

2

(b) Collective anomaly

0 10 20 30

−1

−0.5

0

0.5

1

(c) Contextual point anomaly

0 10 20 30

−1

−0.5

0

0.5

1

(d) Contextual collective anomaly

Fig. 2.2 Different types of anomalies in time series.

Since our area of interest is predictive maintenance, anomalies must be detected in real
time, so that we can identify the problem and react accordingly immediately. To summarize,
the idea is to frame the problem as a semi-supervised online anomaly detection task. From
now, we will assume our dataset {ut}T

t=1, ut ∈ RQ to contain only observations coming
from normal behaviour of the system.

2.1.3 Classical algorithms for semi-supervised anomaly detection

Now that the problem has a well-defined frame, it remains to define the algorithms that we
want to use. Anomaly detection is a task that has been widely studied for various applications,
from bank fraud prevention to intrusion detection, and many classical techniques have been
developed. As we will see later, these techniques are not well suited for our case, and even if
this document focuses on deep learning, we considered important to introduce these methods,
in order to be comprehensive and to justify the use of deep learning.

Density estimation. Given normal data samples x(i) ∈ RQ, i ∈ [N], we can construct an
estimate of the underlying probability density function (PDF), and classify new observations
that lie in a low-density region as anomalies.

The most famous density estimator, which is very popular in data visualisation, and dates
from the 19th century, is the histogram. A histogram divides the input space RQ into small

2.1 Problem framing 11

hypercubes and counts the number of observations lying in each hypercube. It approximates
the probability density function as:

f̂(x) := 1
ThQ

N∑
i=1

1Ch
(x(i) − x) (2.2)

where h ∈ R+ is the size of the hypercubes, and 1Ch
is the indicator function2:

1Ch
(y) =

1, if z ∈ Ch = {z : ∥z∥∞ ≤
h
2},

0, otherwise.

But the histogram estimator builds a step probability density function, which is not smooth.
To address this issue, one can replace the indicator function in formula 2.2 by a more general
kernel function.

This is what Kernel Density Estimation (KDE), also called Parzen-Rosenblatt estimation,
aims to do, by approximating the probability density function as:

f̂(x) := 1
N

N∑
i=1

KH(x(i) − x) (2.3)

where K : RQ → R+ is the kernel function, that is a symmetric density function3, H ∈
RQ×Q is a symmetric positive-definite4 matrix corresponding to the bandwidth, controlling
the smoothing of the density estimation and KH is defined as KH(x) := |H|−1/2K(H−1/2x).
The choice of the kernel function is not crucial, and we usually use the Gaussian kernel
KH(x) = (2π)−d/2|H|−1/2e− 1

2 x⊤H−1x.
For more information, [27] and [28] describe these methods with more details, as well as

other non-parametric density estimation techniques.
These density estimation methods are called non-parametric, since we make no assump-

tion on the underlying distribution. But we could also assume that the data was generated
by a specific distribution, or combination of distributions, with unknown parameters. This
is what mixture models [21] aim to do. The most common mixture model is the Gaussian
Mixture Model (GMM), that assumes that our observations were generated by a combination
of K normal distributions. The probability density function is then written as:

f̂(x) :=
K∑

i=1
ϕiN (x|µi, Σi) (2.4)

2The infinity norm ∥·∥∞ is defined as ∥z∥∞ := max(|z1|, . . . , |zQ|), ∀y = (z1, . . . , zQ) ∈ RQ

3This means we require K(x) > 0, K(−x) = K(x) ∀x ∈ RQ, and
∫

K(x)dx = 1,
4This means x⊤Hx > 0, ∀x ∈ RQ

12 Theory: Machine Learning for Predictive Maintenance

where N (x|µi, Σi) is the ith multivariate normal distribution of mean µi and covariance
matrix Σi,

N (x|µi, Σi) = 1
(2π)Q/2 |Σ|1/2

exp
(
−1

2(x− µi)⊤Σ−1
i (x− µi)

)
, (2.5)

and ϕi, i = 1, . . . , K are the weights attributed to each distribution.
The parameters Θ := (µ1, . . . , µK , Σ1, . . . , ΣK , ϕ1, . . . , ϕK) are usually learned using

the Expectation Maximization (EM) algorithm. EM is not detailed here, so one can read [24]
to learn more about it, and to have a more in depth explanation of GMM.

Clustering. Another way to proceed is to group observations by similarity, to create
clusters. We can then identify new inputs that lie too far away from previously built clusters
as anomalies. Clustering is basically the natural implementation of unsupervised learning,
and an overview of the field can be found in [12]. We will here introduce only two clustering
algorithms but the other existing ones are also relevant.

k-means, originally proposed in [18], is probably the most popular clustering method.
Starting from k given vectors, the algorithms iterates until it finds optimal values for the
cluster centers. Once the algorithm has converged, we obtain k clusters defined by their
means M = (m1, . . . , mk). The Algorithm 1 describes this procedure. For each new
observation z we can evaluate its anomaly score by looking at its distance to the closest
cluster dM(z) := minj ∥z −mj∥.

Algorithm 1 The k-means algorithm

1: function k-MEANS({x(t), t = 0, . . . , T}, k)
2: (m1, . . . , mk)← GETINITIALMEANS({x(t), t = 0, . . . , T}, k)
3: repeat
4: for t← 0 to T do
5: c(t) ← argminj ∥x(t) −mj∥2 ▷ Compute clusters
6: end for
7: for i← 1 to k do
8: Ci ← {t : c(t) = i}

9: mi ←
∑T

t=0 1Ci
(t) · x(t)∑T

t=0 1Ci
(t)}

▷ Update cluster means

10: end for
11: until cluster means have converged
12: end function

2.1 Problem framing 13

We could also use a clustering algorithm that is density-based, unlike k-means which
is centroid-based, for example density-based spatial clustering of applications with noise
(DBSCAN). Given two parameters m and ϵ, DBSCAN builds clusters around so-called
core points, that have more than m points lying in their ϵ-neighbourhood. Once clusters
C = {C1, C2, . . . , Ck} are built, one can use the distance to the closest cluster point:

dC(z) = min
x(i)∈

⋃
j

Cj

∥∥∥z − x(i)
∥∥∥ (2.6)

as the anomaly score. DBSCAN algorithm is not detailed here, and more information can be
found in the original paper [5].

One class SVM. A first version of Support Vector Machine (SVM) for novelty detection
was introduced in 2000 [26]. The idea is to map via a function Φ : RQ → F the normal
observations to a feature space F and separate them from the origin with a hyperplane in F ,
whose distance to the origin is maximized. We choose Φ with the kernel trick, by defining a
kernel function such that κ(x, y) = Φ(x) ·Φ(y). This gives us a decision function, able to
classify new observations as anomalies if they lie on the wrong side of the hyperplane in F .
Thus we search for the optimal hyperplane parameters w and ρ solving

min
w∈F,ξ∈RN ,ρ∈R

1
2 ∥w∥

2 + 1
νN

N∑
i=1

ξi − ρ

subject to
(
w ·Φ(x(i))

)
≥ ρ− ξi, ξi ≥ 0, ∀i ∈ [N].

(2.7)

The vector ξ contains slack variables allowing some observation to lie on the wrong size
of the hyperplane, that are penalized in the objective function. The parameter ν ∈ (0, 1)
is controlling the trade-off between the distance minimization and the regularization term.
Then, the decision function is

f(x) = sign(w ·Φ(x)− ρ) = sign
(

T∑
t=1

αtκ(x(i), x)− ρ

)
, (2.8)

where α = (α1, . . . , αT) is the solution of the lagrangian dual problem

min
α

1
2

N∑
i=1

N∑
j=1

αiαjκ(x(i), x(j)),

subject to 0 ≤ αi ≤
1

νN
, ∀i ∈ [N],

N∑
i=1

αi = 1.

(2.9)

14 Theory: Machine Learning for Predictive Maintenance

Another approach, proposed in 2004 [31] uses a hypersphere boundary instead of a
hyperplane. The minimization problem becomes

min
R∈R,ξ∈RN ,c∈F

R2 + 1
νN

N∑
i=1

ξi

subject to
∥∥∥Φ(x(i))− c

∥∥∥2
≤ R2 + ξi, ξi ≥ 0 ∀i ∈ [N].

(2.10)

The decision function checks if the point lies in the hypershpere:

f(x) = sign
(
R2 − ∥Φ(x)− c∥2

)
(2.11)

= sign
(
R2 −Φ(x) ·Φ(x) + 2Φ(x) · c− c · c

)
(2.12)

= sign
R2 − κ(x, x) + 2

N∑
i=1

αiκ(x(i), x)−
N∑

i=1

N∑
j=1

αiαjκ(x(i), x(j))
 (2.13)

where α = (α1, . . . , αN) is the solution of the lagrangian dual problem

max
α

N∑
i=1

αiκ(x(i), x(i))−
N∑

i=1

N∑
j=1

αiαjκ(x(i), x(j))

subject to 0 ≤ αi ≤
1

νN
, ∀i ∈ [N],

N∑
i=1

αi = 1.

(2.14)

Generally, we use a Radial Basis Function (RBF) kernel, also called Gaussian kernel, defined
by κRBF(x, y) := e−γ∥x−y∥2

, where γ is the spread of the kernel.
All the previously discussed algorithms (density estimators, clustering and one-class

SVM) are tried-and-tested methods for semi-supervised anomaly detection, but they have
some limitations, especially in our case. First of all, if we use the punctual observations
x(t) = ut as input of the models, this does not allow seeing anomalies that are time
dependent, namely contextual and collective anomalies. As it is, these algorithms will only
detect punctual global anomalies, which is not sufficient at all. A workaround would be to
use as input, not only punctual observations, but sliding window sub-sequences of size S,
that is x(t) = ut ⊕ ut+1 ⊕ . . .⊕ ut+S−1 (c.f. Figure 2.1)5. But, since we already focus on
multivariate times series, with dimension Q possibly of order 2 or 3, if we use the sliding
window technique, the dimension is multiplied by the size of the window, and can become
pretty big. This brings up another problem, which is the curse of dimensionality. All these
methods suffer from this curse, which means they perform bad on high-dimensional spaces,
because the value added by additional dimensions is much smaller compared to overhead

5⊕ describes the concatenation operation, (x1, . . . , xm)⊕ (y1, . . . , yn) := (x1, . . . , xm, y1, . . . , yn).

2.2 Semi-supervised deep learning for predictive maintenance 15

it adds to the algorithm, which is exponential. In the next section, we will explore a set of
algorithms that are able to handle time series inputs and that manage to overcome the curse
of dimensionality.

2.2 Semi-supervised deep learning for predictive mainte-
nance

Deep learning is a branch of machine learning that relies on a well known biomimetic system:
deep artificial neural networks. Created in the 1950’s, it has developed exponentially since
the 2010’s, thanks to new architectures and techniques and especially thanks to the strong
increasing of the computing power. Deep learning has quickly outperformed other algorithms
in many areas, and anomaly detection is no exception. In this section we will first of all
introduce the field of deep learning through a technical overview. We will then present a
one-class neural network classifier called autoencoder, and finally show how we can do
forecasting-based semi-supervised anomaly detection with deep neural networks. To have a
deeper understanding of deep learning as a whole, we recommend [15] and [8].

2.2.1 An overview of Deep Learning

As in Section 2.1.1 for supervised learning, let us consider the set X = {(x(i), y(i))}N
i=1,

x(i) ∈ RQ being the inputs and y(i) ∈ RD being the labels. We suppose there exists
a function f : RQ → RD describing the underlying phenomenon, such that the data is
generated according to

y = f(x) + ϵ(x), (2.15)

ϵ : RQ → RD describing a potential observation noise. We are trying to approximate f by a
function f̂ using only the information given by the samples of E.

A linear model [29] could do the job by setting f̂(x) = xW+b where W ∈ RQ×D is the
weights matrix and b ∈ RD is the bias. These parameters can then be found by minimizing
a loss function, which is basically a measure of the error between the real data y(i) and the
predictions ŷ(i) := f̂(x(i)), typically the mean squared error:

MSE := 1
N

N∑
i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2

. (2.16)

But most of the real world processes are highly non-linear, so we need to consider more
complex approximation functions.

16 Theory: Machine Learning for Predictive Maintenance

As a first step we can apply some non-linear activation function ϕ to the linear model
such that f̂(x) = ϕ(xW + b). Some popular activation functions are shown in Figure 2.3.

−5 0 5

0

0.5

1

(a) Sigmoid

−5 0 5

−1

−0.5

0

0.5

1

(b) Tanh

−5 0 5

0

2

4

6

(c) ReLU

Fig. 2.3 Usual activation functions.

This functional system is the basis of artificial neural networks, since it roughly models
the structure of biological neurons as we can see in Figure 2.4.

Dendrites
Axon

terminals

Axon

Soma
Myelin

(a) A biological neuron

x1x
(i)
1

x2x
(i)
2

...

xQx
(i)
Q

zj

bj

ϕ ŷ
(i)
j

w1j

w2j

wQj

(b) An artificial neuron

Fig. 2.4 A biological neuron compared to an artificial neuron.

An artificial neural network is the combination of several of these artificial neurons,
where the output of a neuron is the input of another, such that a hidden layer of N1 neurons is
created between the input and the output layers. The approximation function hence becomes

f̂(x) = ϕ[2]
(
ϕ[1]

(
xW [1] + b[1]

)
W [2] + b[2]

)
, (2.17)

where W [1] ∈ RQ×N1 , b[1] ∈ RN1 , W [2] ∈ RN1×D, b[2] ∈ RD. It is proven that this class
of approximation functions are able to approximate any continuous function, as long as

2.2 Semi-supervised deep learning for predictive maintenance 17

N1 is big enough, which means neural networks with one hidden layer only are universal
approximators.

Now deep learning is simply about adding more hidden layers to the network, which
allows to model more easily complex functions. A neural network is usually said to be deep
if it has L > 1 hidden layers. From now we will use the following notations:

• L is the number of hidden layers of the network,

• Nl is the number of neurons in the lth layer, with N0 = Q and NL+1 = D,

• a[l] := ϕ[l]
(
a[l−1]W + b[l]

)
, l = 1, . . . , L + 1, is the output of layer l,

• x = a[0] is the input layer and ŷ = a[L] the output layer,

• w
[l]
ij = W

[l]
(ij) is the weight between ith neuron of layer l − 1 and j th neuron of layer l,

• b
[l]
j is the bias of the j th neuron of layer l.

Let f̂ [l](x) = ϕ[l](xW [l] + b[l]) be the function corresponding to the lth layer of the
network. Then the general formula for a deep neural network can be written as

f̂(x) = (f̂ [L+1] ◦ f̂ [L] ◦ . . . ◦ f̂ [1])(x). (2.18)

Figure 2.5 shows an example of such a deep neural network.

a
[0]
1x

(i)
1

a
[0]
2x

(i)
2

a
[0]
3x

(i)
3

a
[0]
4x

(i)
4

a
[1]
1

a
[1]
2

a
[1]
3

a
[2]
1

a
[2]
2

a
[2]
3

a
[3]
1 ŷ

(i)
1

a
[3]
2 ŷ

(i)
2

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Fig. 2.5 A deep artificial neural network with L = 2, N0 = 4, N1 = N2 = 3, N4 = 2. We
omitted the weights and the biases for aesthetic reason.

18 Theory: Machine Learning for Predictive Maintenance

Let Θ be the set of all the weights and bias values of a neural etwork:

Θ =
{
w

[l]
ij : l ∈ [L + 1], i ∈ [Nl−1], j ∈ [Nl]

}
∪
{
b

[l]
j : l ∈ [L + 1], j ∈ [Nl]

}
.

The goal is to tune these paramaeters in order to minimize a loss function L(Θ) (for example
the MSE function defined in Equation 2.16). This training process is iterative, and consists
in changing the parameters step by step in the opposite direction of the gradient∇L(Θ), that
is the partial derivatives of the loss with respect to each parameter. The gradient is computed
with the backpropagation algorithm. More information is given on neural networks learning
process in Appendix A. Now that we have introduced the core concepts of deep learning, we
will focus on some neural network architectures, that are crucial when it comes to time series
data.

Artificial neural networks as those we have previously discussed are called feedforward
neural network, because the information goes straight from input nodes to output nodes,
through hidden nodes, without any cycle. As for classical machine learning algorithms
presented in Section 2.1.3, this does not allow to take in account temporal dependencies
inherent to time series data. Recurrent neural networks (RNN) were designed to address this
problematic, by naturally handling temporal sequences as input. The idea is to transform
the neurons of the network into RNN cells, by adding to them a hidden state and a recurrent
connection with themselves. When consecutive observation of a sequence arrive in the
network, each cell takes also as input the previous hidden state transmitted by the recurrent
connection, and outputs the new hidden state. The computation of the new hidden state is
made with weights shared across time, that are also learned during training:

ht = ϕh(Whxt + Uhht−1 + bh), (2.19)

where ht ∈ Rh is the hidden state, Wh ∈ Rh×Q and Uh ∈ Rh×h are the weights respectively
for the input and the previous state, bh ∈ Rh is the bias, and ϕh is the hidden activation
function, usually tanh. We usually add a classical fully connected layer at the end of a
recurrent neural network with an output activation function chosen according to the target
values range.

2.2 Semi-supervised deep learning for predictive maintenance 19

ht

xt

RNN

ht

(a) Simplified view of a
recurrent neural network

ht−1

xt−1

RNN
ht−1

ht

xt

RNN
ht

ht+1

xt+1

RNN
ht+1ht−2

· · · · · ·

(b) Unfolded view of a recurrent neural network

Fig. 2.6 Recurrent neural network structure

The general formula of a recurrent neural network differs from the one written in Equation
2.18 since it is now time dependent:

f̂t(xt) =
(
f̂

[L+1]
t ◦ f̂

[L]
t ◦ . . . ◦ f̂

[1]
t

)
(xt), (2.20)

where f̂
[l]
t (xt) := h

[l]
t is the output of layer l, as defined in Equations 2.19. Hence, given a

sequence (xt)T
t=1, a RNN will output a new sequence (ŷt)T

t=1 such that

(ŷt)T
t=1 = f̂

(
(xt)T

t=1

)
=
(
f̂t(xt)

)T

t=1
. (2.21)

Unfortunately, RNN have difficulties to take into consideration events that arised too long
ago, due to the vanishing gradient problem. Long short term memory networks [11] partially
solve this issue by adding a cell state to the network units, playing the role of memory:

Ft = ϕF (WF xt + UF ht−1 + bF),
It = ϕI(WIxt + UIht−1 + bI),

Ot = ϕO(WOxt + UOht−1 + bO),
ct = Ft ⊙ ct−1 + It ⊙ tanh(Wcxt + Ucht − 1 + bc),
ht = Ot ⊙ tanh(ct).

(2.22)

Ft is the forget gate, which controls which information from prior steps should be thrown
away or kept. It is the input gate, controlling the cell state update given the new input. Ot is
the output gate, controlling the computing of the new hidden state.

20 Theory: Machine Learning for Predictive Maintenance

2.2.2 Autoencoders

Autoencoders are a type of neural networks that aim to learn an encoded representation of
the inputs. An autoencoder consists of two parts: an encoder network that maps the input to
its encoded representation, and a decoder network that reconstructs the original data given its
encoded representation. So the input and the target of an autoencoder are the same. Formally,
the goal is to approximate the identity function f(x) = x with a deep neural neural network
composed of two sub-networks, such its the approximation function is f̂ = (f̂D ◦ f̂E), where
f̂E corresponds to the encoder network and f̂D to the decoder. This process is shown in
Figure 2.7.

x Encoder f̂E z Decoder f̂D x

Input

Code

Output

Fig. 2.7 The structure of an autoencoder

The loss is the reconstruction error:

L(Θ) =
N∑

i=1

∥∥∥y(i) − ŷ(i)
∥∥∥2

=
N∑

i=1

∥∥∥x(i) − f̂(x(i))
∥∥∥2

(2.23)

Autoencoders actually learn to summarize inputs and thus learn structure in data, that
is why they can be used in semi-supervised anomaly detection. Once an autoencoder has
understood the distribution of normal data through its encoding-decoding process, it can
guess if a new observation comes from a different distribution, by checking if it behaves
as planned when encoded and decoded back. For an anomalous input, one expects the
reconstruction error or Equation 2.23 to be unusually high.

If we use LSTM cells instead of classical neurons in the autoencoder, the latter can
process the sliding window sequences x(t) = (us)t+S−1

s=t and encode them into hidden and

2.2 Semi-supervised deep learning for predictive maintenance 21

cell states. The decoder can then recreate a full sequence, starting from an empty input and
the encoded states, and taking the output of time t as the input of time t + 1. This recurrent
autoencoder is an extension of the Seq2Seq model [30] where the input and the target are
the same. Then when a new incoming sequence contains points with an abnormally high
reconstruction error, one can report them as anomalies. This approach is described precisely
in [19].

The issue with the autoencoder approach is the interpretability of the results. Indeed, the
input dimensions contributing to the high reconstruction error, and thus the detected anomaly,
are not indicated. It is then difficult to localize the source of the problem, in order to act
accordingly. This is the motivation behind forecasting-based methods.

2.2.3 Forecasting-based anomaly detection

To address the problem of lack of interpretability, one can try to explicitly model the expected
behaviour of our industrial system, and compare it to the actual observations [14]. This
requires some preliminary work, to understand the functioning of the system, in order to
model it accurately.

First of all we define the variablesR = {Y1, . . . , YR} that we want to model, which are the
quantities to monitor, also called dependent variables. Then, we have to find the variablesP =
{X1, . . . , XP} that are relevant to explain the values of the dependent variables; these are
the independent variables. There may be other variables important to explain the dependent
variables, but that are considered constant throughout the course of the investigation; we call
them the control variables. Let {uP

t }T
t=1, uP

t ∈ RP be the measurements corresponding to
the independent variables, and {uR

t }T
t=1, uR

t ∈ RR those corresponding to the dependent
variables. We consider these sets to contain samples from a normal behaviour of the system
only, that is, without any anomaly or failure.

Let us one more time consider the sliding window method, with sub-sequences x(t) =
(uP

t)t+S−1
s=t and y(t) = (uR

t)t+S−1
s=t . A LSTM network can then learn the relation between

independent and dependent variables and approximate it with a function f̂ such that

f̂
(
(uP

s)t+S−1
s=t

)
= (ûR

s)t+S−1
s=t ≈ (uR

s)t+S−1
s=t . (2.24)

Most of the time, the independent variables (uP
s)t+S−1

s=t are not sufficient to forecast
accurately the dependent variables (uR

s)t+S−1
s=t . Indeed, we also need to know the state of the

system at the beginning of the sequence. To do so, we can encode the b previous steps of
the dependent variables (uP

s)t−1
s=t−b, possibly with some more relevant information (uS

s)t−1
s=t−b

called state variables, by processing them through another LSTM network, and use the

22 Theory: Machine Learning for Predictive Maintenance

last hidden state ht−1 and cell state ct−1 as initial state of our main LSTM network. Both
networks are plugged into one big structure, and are trained together.

Once our forecasting model is built, for each new sequences (uP
s)t−1

s=t−b, (uS
s)t−1

s=t−b, we
can forecast (ûR

s)t+S−1
s=t . Knowing the true sequence (uR

s)t+S−1
s=t as well, we can inspect the

difference between each observed value uR
si and the corresponding forecast value ûR

si , for
s = t, . . . , t + S − 1 and i = 1, . . . , D. If it is greater than a threshold λ ∈ R+, we report an
anomaly.

Unlike autoencoders, this method allows some interpretability, since we know which
output dimensions have an abnormal behaviour, and we can even visualise and compare each
univariate predicted sequence with its corresponding actual observed sequence.

The whole process is summarized in Figure 2.8.

uS
t−b

uP
t−b

· · ·

· · ·

uS
t−1

uP
t−1 uP

t · · · uP
t+S−1

LSTM · · · LSTM LSTM · · · LSTM

ûR
t · · · ûR

t+S−1

uR
t · · · uR

t+S−1

comparison

Encoder

Fig. 2.8 Forecasting-based anomaly detection

2.2.4 Prediction intervals to replace thresholds

The two methods previously described, namely autoencoders (section 2.2.2) and forecasting-
based anomaly detection (section 2.2.3) require to fix an arbitrary threshold on the recon-
struction error and respectively the forecast error. But finding the optimal value for this
threshold can be complex. In [20] and [19], the authors propose to fit a normal distribution to
the errors and to set a threshold on its likelihood. We will here introduce another approach,
by estimating a prediction interval, in which we are almost sure that the actual value should

2.2 Semi-supervised deep learning for predictive maintenance 23

lie. An anomaly is then a point that lies out of the prediction interval. We will in this section
describe how to create a prediction interval for a neural network using the bootstrap method,
as described in [13].

Let us recall the general deep learning setup. We have a set X = {(x(i), y(i))}N
i=1,

x(i) ∈ RQ being the inputs and y(i) ∈ RD being the labels. We suppose there exists
a function f : RQ → RD describing the underlying phenomenon, such that the data is
generated according to

y = f(x) + ϵ(x), (2.25)

ϵ : RQ → RD describing a potential observation noise. Once we have built an approximation
f̂ of f with a deep neural network, we can decompose the error between true values and
predictions as

y − f̂(x) = y − f(x) + f(x)− f̂(x)
= ϵ(x) + [f(x)− f̂(x)]. (2.26)

Assuming the independence of the two terms in Equation 2.26, the total variance associ-
ated to the model outcome is

σ2(x) = σ2
ϵ (x) + σ2

f̂
(x), (2.27)

where σϵ is the variance due to noise in observations, or aleatoric uncertainty, and σf̂ is the
variance associated to the model misspecification, or epistemic uncertainty. To estimate
σf̂ , we will use an ensemble method called the bootstrap method. It consists in building B

training sets by sampling with replacement from the original dataset, and training B different
models {f̂b}B

b=1 on these sets. The bootstrap prediction function is then

f̂bootstrap(x) := 1
B

B∑
b=1

f̂b(x), (2.28)

and the variance σ2
f̂

can be estimated as

σ2
f̂
(x) ≈ 1

B − 1

B∑
b=1

(
f̂b(x)− f̂bootstrap(x)

)2
, (2.29)

24 Theory: Machine Learning for Predictive Maintenance

On another hand, we have

σ2
ϵ (x) = σ2(x)− σ2

f̂
(x)

= E
[
(y − E[y | x])2 | x

]
− σ2

f̂
(x)

= E
[
(y − f̂bootstrap(x))2 | x

]
− σ2

f̂
(x) (2.30)

which can be estimated with the residual values

r2(x(i)) := max
((

y(i) − f̂bootstrap(x(i))
)2
− σ2

f̂

(
x(i)

)
, 0
)

. (2.31)

We can then build the set of residuals {(x(i), r2(x(i)))}N
i=1, and train another neural network

on samples that were not seen by the bootstrap models during their training (e.g. validation
samples), to find a relation

f̂r2(x) ≈ r2(x) ≈ σ2
ϵ (x), (2.32)

using the maximum likelihood as loss function:

L(Θ) = 1
2

N∑
i=1

(
ln
(
f̂r2(x(i))

)
+ r2(x(i))

f̂r2(x(i))

)
. (2.33)

Finally, we have our estimation

σ̂2(x) := 1
B − 1

B∑
b=1

(
f̂b(x)− f̂bootstrap(x)

)2
+ f̂r2(x). (2.34)

Hence, given an input x, the prediction interval with a confidence level of (1− α) is then
given by

f̂bootstrap(x)± t1−α/2,B

√
σ̂2(x), (2.35)

where t1−α/2,B is the 1−α/2 quantile of the Student’s t distribution with B degrees of freedom.
The parameter α allows flexibility. If we reduce α, less false positive are expected, but the
algorithm will be less sensitive to anomalies.

Chapter 3

Practice:
Predictive Maintenance in Hydropower
Plants

In the previous chapter we have seen that predictive maintenance can be framed as a semi-
supervised anomaly detection problem, and we have introduced two deep learning methods
to address this problem, namely autoencoders and forecasting based method. In this new
chapter we apply these methods to real data provided by the Swiss energy company Alpiq.

3.1 Introduction

We will focus on a well known critical issue in impoundment hydropower plants, that is, the
monitoring of turbine guide bearing pads temperature for vertical shafts in high head plants.

We first of all need to set the context, and introduce some basic knowledge on hydropower
plants that we did not discuss in the introduction. Once again, more information on this field
can be found in [23], [7] and [25].

Impoundment hydropower plants are made up of groups, which are shafts on which a
generator, a turbine, and possibly a pump, are aligned. We will here consider only vertical
shafts, although horizontal ones exist. For high head plants (more than 300m between
the reservoir top and the downstream level), we most of the time use a Pelton turbine. In
turbine-mode, injectors propel water at high speed on the Pelton turbine to make it rotate and
produce electricity (see Figure 3.1).

26 Practice: Predictive Maintenance in Hydropower Plants

(a)

DISTRIBUTOR

DEFLECTOR

PELTON TURBINE

 INJECTOR

(b)

Fig. 3.1 A Pelton turbine (a) and its functioning (b).

The turbine guide bearing, made up of pads, surrounds the shaft at the turbine’s level,
and is separated from the shaft by a layer of oil. It aims to keep the shaft aligned vertically
and to support any radial force that can take place during the operation. When the machines
are working, this applies a force on the shaft, therefore the pads heat. If the shaft rubs against
pads, it makes them melt and creates an major failure, that is why it is important to monitor
the bearing pads temperature.

The main significant features to consider, besides the temperatures of the bearing pads,
are the degree of opening of the injectors, the temperature of the oil, and the temperature
of the cooling water. If the facility is a pumped-storage plant, we also consider the turbine
speed or the active power of the station to distinguish turbine mode from pump mode, as the
latter could influence turbine guide bearing pads temperature as well, even if the injectors are
not open.

In this chapter we will consider two case studies: first a data-set from the FMHL+ power
plant, and then one from Bieudron power plant.

3.2 FMHL+ power plant

The FMHL+ plant is actually an extension of the FMHL power plant, located in Veytaux
on the lake Geneva shore. It is a pumped-storage plant with the lake Geneva as the lower

3.2 FMHL+ power plant 27

reservoir, and the Hongrin lake as the upper reservoir. FMHL+ added two new groups (Group
5 and Group 6) to the four existing, each of the two being vertical shafts with a power of
120MW. The structure of the two new groups is shown in Figure B.1 of Appendix B. The
goal is to monitor the ten turbine guide bearing pads temperature of the Group 5.

3.2.1 Data-set and methods

The data-set is a multi-variate time series with minute granularity and covers one years of
sequential observations, assumed as normal. The variables are the pads temperature, the
injectors opening, the oil and cooling water temperature, and the turbine speed.

As we have seen in the chapter 2, we have to cut the time series into small sub-sequences
using the sliding window technique, in order to process them an input to detect collective and
contextual anomalies. We use a window size of S = 240 which corresponds to four hours,
and a stride value of R = 60 to take sub-sequences each hours.

The sub-sequences x(t) = (us)t+S−1
s=t form our data-set X = {x(t)}, t = 1, R, . . . , ⌊T

R
⌋.

We randomly split X into a train set, a validation set, and a test set, containing respectively
60%, 20% and 20% of the sequences. The train set contains 5254 sequences and the
validation and test sets contain 1750 sequences each. We standardise all data using the mean
and standard deviation of the training set before passing it to our neural networks, in order to
avoid disproportion between features and facilitate optimization.

We define our recurrent autoencoder with LSTM cells that maps sequences to hidden and
cell states of size 256 each, and decode them to reconstruct the original data. We used a batch
size of 256, MSE loss, and an RMSProp optimizer as in [9], with a learning rate of 0.001.
Our forecast model for its part is made of 5 hidden layers of size 128 each, with LSTM
cells. We used a batch size of 32, MSE loss, and an RMSProp optimizer with a learning
rate of 0.002. The dependent variables are the bearing pads temperatures, the independent
variables are the injectors opening, and the state variables are the oil and cooling water
temperatures. The parameters of these neural networks were optimized using the hyperband
method, described in [17].

For both methods, we build B = 10 copies of the network and train them on bootstraped
samples of the training set, in order to create prediction intervals as described in Section
2.2.4, with a confidence level parameter α to choose. We monitor the value of the loss on the
validation set in order to early stop the training when the model overfits, and we keep the
parameters that minimize this validation loss. In order to estimate the aleatoric uncertainty,
we train another network on the residuals of the validation set, searching for the parameters
minimizing the likelihood loss on the test set. This network has one hidden layer of 64 LSTM
cells, and is trained with batch size 128 and learning rate 0.001.

28 Practice: Predictive Maintenance in Hydropower Plants

3.2.2 Results

When working on this case study, we quickly realised a problem: we did not have access to
a predictable failure or incident to proof test our models. The only performance indicator
that we have is how well it fits the normal behaviour of our system. We apply the models to
the test set, which contains only normal behaviour data, and look at the number of reported
anomalies, that is, the false positives.

Autoencoder With the autoencoder model, we obtain a MSE loss of 0.029 on the test set.
We then compute the number of time steps for which the reconstructed data is out of the
α-prediction interval for any dimension. Table 3.1 shows this false positive time steps rate
for some values of α and Figure 3.2 graphs the false positive rate as a function of α.

α False positive Total Ratio

0.05 42 859 420 000 0.1020
0.01 10 055 420 000 0.0239
0.005 5966 420 000 0.0142
0.001 1895 420 000 0.0045

Table 3.1 False positive ratio for some values of α.

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

0

5 · 10−2

0.1

0.15

0.2

0.25

α

Fa
ls

e
po

si
tiv

e
ra

tio

Fig. 3.2 False positive rate as a function of α

3.2 FMHL+ power plant 29

Forecasting-based method The forecasting-based model has an MSE loss of 0.0018 on
the test set. Since the dimension in which the anomaly occurs is relevant, we will not only
look at the time steps but rather at the total number of observed values that lie out of the
prediction interval. The Table 3.2 and Figure 3.3 show the results for the forecasting-based
method.

α False positive Total Ratio

0.05 48 609 4 200 000 0.0116
0.01 27 873 4 200 000 0.0066
0.005 22 119 4 200 000 0.0053
0.001 16 355 4 200 000 0.0039

Table 3.2 False positive ratio for some values of α.

10−14 10−12 10−10 10−8 10−6 10−4 10−2

0

0.5

1

1.5

·10−2

α

Fa
ls

e
po

si
tiv

e
ra

tio

Fig. 3.3 False positive rate as a function of α

Even if both models have successfully learned the normal behaviour of the system, and
although we can tune the confidence parameter α to adjust the false positive rate, these
results are not sufficient to evaluate our methods. Indeed, with a big enough interval, one
can achieve a false positive rate of 0%, but we risk missing all incoming anomalies. In order
to really assess the performance of our models, we need to confront them to some failures
or incident. That is why, staying on the turbine guide bearing pads temperature issue, we
investigated another data-set, coming from another power plant.

30 Practice: Predictive Maintenance in Hydropower Plants

3.3 Bieudron power plant

The Bieudron power station, in the Cleuson-Dixence complex, is a classical impoundment
hydropower plant. It has the world’s highest head (1883 m). It turbines the water from the
Grande Dixence reservoir with three groups of 400MW each, for a total power of 1200MW.
Each group is a vertical shaft, whose structure is shown in Figure B.2 of Appendix B. We
aim to monitor the eight turbine guide bearing pads temperature of the Group 1.

In the Bieudron power plant, two arbitrary threshold are currently fixed on the bearing
pads temperature. When a pad’s temperature exceeds the first threshold, an alarm is sent, and
when the second one is crossed, the group stops its activity. On August 4, 2016, the first
alarm level of Group 1 bearing pad 2 was triggered. This resulted in investigation and repair
works on pads 2, 5, and 6, until the final resolve on October 6, 2017. The goal is to train our
models on the normal behaviour following the maintenance action of October 2017, and to
test it retroactively on the faulty behaviour preceding the discovery of the problem, in July
and August 2016.

3.3.1 Data-set and methods

The data-set, which has minute granularity, contains one year of the system’s proper be-
haviour, following the repair works, and one month of potential faulty behaviour, during
which the alarm on pad 2 was triggered. Since Bieudron is not a pumped-storage plant, we
will consider the same features as for FMHL+ case, but without the turbine speed.

We proceed one more time by slicing the dataset into sliding window sub-sequences,
such that our data-set is X = {x(t)}T

t=1 = {(us)t+S−1
s=t }T

t=1. For training, we only consider
the set of sequences observed in the year following the repair works. We randomly split this
set into a training set, a validation set, and a test set, containing respectively 60%, 20% and
20% of the sequences. The train set contains 5238 sequences and the validation and test sets
contain 1746 sequences each.

We use the same architecture and parameters that we used for the FMHL+ case study, for
both the autoencoder and the forecast model.

3.3.2 Results

This time, we not only estimate how well the models can fit the normal behaviour of the
system, along with false positive rate. We will look at the models output on the period
preceding the repair works, during which bearing temperature alarms were triggered, to see
if the problem is well detected.

3.3 Bieudron power plant 31

Autoencoder The autoencoder achieved an MSE score of 0.0164. As before, the evolution
of the false positive rate with respect to the confidence parameter α is shown in Table 3.3
and Figure 3.4.

α False positive Total Ratio

0.05 45 694 419 040 0.1090
0.01 11 796 419 040 0.0282
0.005 7634 419 040 0.0182
0.001 2484 419 040 0.0059

Table 3.3 False positive ratio for some values of α.

10−7 10−6 10−5 10−4 10−3 10−2 10−1

0

5 · 10−2

0.1

0.15

0.2

Fa
ls

e
po

si
tiv

e
ra

tio

Fig. 3.4 False positive rate as a function of α

Suppose that we run the model each hour to predict the last hour of the system behaviour,
and we report any value lying out of the interval as an anomaly. Figure 3.5 shows the
number of anomalies reported by the autoencoder each day between July 4 and August 4, for
α = 0.95, 0.99, 0.995, 0.999.

32 Practice: Predictive Maintenance in Hydropower Plants

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Number of anomalies

(a) α = 0.05

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Number of anomalies

(b) α = 0.01

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Number of anomalies

(c) α = 0.005

3.3 Bieudron power plant 33

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Number of anomalies

(d) α = 0.001

Fig. 3.5 Number of reported anomalies per day during the faulty period depending on α.

Some anomalies are detected, notably on August 4, that is, the day when the alarm
triggered, and the bigger α is, the more anomalies are reported. But since we have no more
information about these potential anomalies, it is hard to know if we have successfully
detected relevant anomalies. This is why forecasting-based methods may be more judicious
to use.

Forecasting-based method When fitting a forecasting model on Bieudron dataset, we
were able to obtain an MSE loss of 0.0004. Table 3.4 and Figure 3.4 once again describe the
false positive rate versus α relation.

α False positive Total Ratio

0.05 51 638 3 352 320 0.015 40
0.01 10 561 3 352 320 0.003 15
0.005 4318 3 352 320 0.001 29
0.001 59 3 352 320 0.000 02

Table 3.4 False positive ratio for some values of α.

34 Practice: Predictive Maintenance in Hydropower Plants

10−6 10−5 10−4 10−3 10−2

0

0.5

1

1.5

·10−2

Fa
ls

e
po

si
tiv

e
ra

tio

Fig. 3.6 False positive rate as a function of α

As for the autoencoder, we run the model each hour and compute the number of reported
anomalies, aggregated by day, on the period containing potential early signs of the problem.
This time however, with the forecasting-based method, one can locate the anomaly in the
output dimensions. In other words, we know which bearing pad has an abnormal temperature,
causing the anomaly report. The results are shown in Figure 3.7.

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Bearing temperature 1
Bearing temperature 2
Bearing temperature 3
Bearing temperature 4
Bearing temperature 5
Bearing temperature 6
Bearing temperature 7
Bearing temperature 8

(a) α = 0.05

3.3 Bieudron power plant 35

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Bearing temperature 1
Bearing temperature 2
Bearing temperature 3
Bearing temperature 4
Bearing temperature 5
Bearing temperature 6
Bearing temperature 7
Bearing temperature 8

(b) α = 0.01

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Bearing temperature 1
Bearing temperature 2
Bearing temperature 3
Bearing temperature 4
Bearing temperature 5
Bearing temperature 6
Bearing temperature 7
Bearing temperature 8

(c) α = 0.005

Jul 05 Jul 12 Jul 19 Jul 26 Aug 02
0

100

200

300

400

500

600

Nu
m

be
r o

f a
no

m
al

ie
s

Bearing temperature 1
Bearing temperature 2
Bearing temperature 3
Bearing temperature 4
Bearing temperature 5
Bearing temperature 6
Bearing temperature 7
Bearing temperature 8

(d) α = 0.001

Fig. 3.7 Number of reported anomalies per day during the faulty period depending on α.

36 Practice: Predictive Maintenance in Hydropower Plants

It has to be noted that the bearing pads 2 and 6 problems are properly detected, and in
particular on August 4, day at which the alarm was triggered, which counts the most anomaly
reports. With α = 0.001, some early warning signs appear for pad 6 since July 18 and for
pad 2 on July 21. With α = 0.005, it appears on July 12 for pad 2 and July 18 for pad
6. When we set α = 0.01, we have few anomalies reports on July 7 for pad 2, and more
significant ones from July 12. For pad 6, we see early signs again from July 18, and we also
have anomalies on pad 5 reported on July 27 and 29. With α = 0.05, much more anomalies
appear, starting on July 5 for pad 2, July 8 for pad 5, July 18 for pad 6, but also a few anomaly
reports on pads 5 and 7 on July 27 notably. We see that adjusting α increases the sensitivity
of the model to anomalies.

In a nutshell, one can achieve an early detection of bearing temperature issues while
having a low false positive rate (see Table 3.4).

The advantage of the forecasting-based method is the interpretability, and the possibility
to visualise the anomaly detection process. Figure 3.8 illustrates this, by graphing the
true values and the forecast for the whole August 4, 2016 day, with confidence parameter
α = 0.05. Anomalies are represented as vertical red bars, and we can see that the temperature
of bearing pads 2 and 6 are higher than what the model expects between time steps 650 and
1200 approximately. This gives an idea of a graphical user interface that could be used by
operators to visualise the anomalies and interpret them.

3.3 Bieudron power plant 37

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 1

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 2

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 3

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 4

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

35

40

45

50

55

60

65

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 5

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 6

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 7

Observation
Prediction

0 200 400 600 800 1000 1200 1400
Time step

30

40

50

60

70

Be
ar

in
g

Te
m

pe
ra

tu
re

 8

Observation
Prediction

Fig. 3.8 Forecasting-based anomaly detection visualisation for August 4, 2016

Chapter 4

Conclusion and Future Work

In this chapter we will summarize the work that has been done and, based on our experiences,
we will draw conclusions. The goal is to establish an appropriate strategy and framework
for machine learning based predictive maintenance. We will also try to highlight possibly
interesting future work.

In section 2.1.1 and 2.1.2, we have seen that supervised learning is not appropriate since
failure data is lacking. That is why we reframe the predictive maintenance problem as semi-
supervised anomaly detection in time series, where the goal is to learn the normal behaviour
of an industrial system, and classify the diverging observations as anomalies, that need
attention. In section 2.1.3, we have introduced classical algorithms that can perform this task,
namely density estimation methods, clustering algorithms, and one-class SVM. But due to
bad scaling, notably because of the curse of dimensionality, and because they cannot process
time series data naturally, classical methods are not the best choice for predictive maintenance.
To address this problem, we thus chose to focus on deep learning techniques. We have seen
two methods based on deep neural networks for anomaly detection. First autoencoders, in
section 2.2.2, that learn to reconstruct inputs, and on another hand forecasting-based method,
in section 2.2.3, that explicitely models the system. In order to process temporal sequences,
more precisely sliding window sequences from a multivariate time series data, we use LSTM
cells. We proposed using a prediction interval with a given confidence level on the models
output, and to report any new observation lying outside of it as an anomaly.

When we applied autoencoders and forecasting-based method with prediction intervals
to real data, coming from the FMHL+ and the Bieudron power plants, we obtained several
results. First of all, by tuning the parameter α of the prediction interval confidence, one can
choose the sensitivity of the interval and reduce false positives as much as wanted. This
of course has a drawback since it makes the interval more permissive, yet we need enough
sensitivity to capture anomalies. By testing the models on a faulty behaviour example from

40 Conclusion and Future Work

the Bieudron power plant, we confirmed that a forecast-based model was able to detect
the test anomalies, while keeping a low false positive rate. We were not able to reproduce
comparable results with autoencoders, that certainly detected anomalies, but the lack of
interpretability did not allow to validate the results. Conversely, forecasting-based method
with prediction interval allows a high level of interpretability for the anomaly detection
process. The operator can visualise which dimension causes the anomaly, and how it differs
from the expected behaviour of the system.

Forecasting-based method for predictive maintenance can be used online, with a delay
equal on the sliding window size. It simulates in real-time the normal functioning of an
industrial system and reports any anomalous behaviour. It offers a smarter alternative to the
thresholds approach that is currently implemented, and can be combined with it. Unlike
thresholds, this method captures multivariate collective and contextual anomalies. Due to its
interpretability, the integration of such a solution would be easier and much more relevant
than deploying a black box machine learning tool.

In this document we focused on LSTM neural networks to process time series data, but
some other approaches are available, and it would be interesting to test them as well. For
example, attention mechanisms [33] have been introduced for transduction problems and
come in powerful for time series as well. One-dimensional convolutional networks with
dilatation [32] have also shown very good results in audio sequences processing, and are
less needy in terms of computer power. Very recently, [3] proposed to implement neural
networks as continuous-depth models instead of discrete layers, the output being computer
with differential equation solvers. This achieves impressing results on time series data and
deserves to be tested on predictive maintenance problems.

References

[1] Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

[2] Chandola, V. (2009). Anomaly Detection for Symbolic Sequences and Time Series Data.
University of Minnesota, 2009. Major: Computer science.

[3] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary
differential equations. CoRR, abs/1806.07366.

[4] Doshi-Velez, F. and Kim, B. (2017). Towards A Rigorous Science of Interpretable
Machine Learning. arXiv e-prints, page arXiv:1702.08608.

[5] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters in large spa-
tial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press.

[6] Fernández-Francos, D., Martínez-Rego, D., Fontenla-Romero, O., and Alonso-Betanzos,
A. (2013). Automatic bearing fault diagnosis based on one-class ν-svm. Computers &
Industrial Engineering, 64(1):357 – 365.

[7] Giesecke, J. and Mosonyi, E. (2005). Wasserkraftanlagen: Planung, Bau und Betrieb.
Springer.

[8] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[9] Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850.

[10] Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation.
In 2008 International Conference on Prognostics and Health Management, pages 1–6.

[11] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

[12] Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition
Letters, 31(8):651 – 666. Award winning papers from the 19th International Conference
on Pattern Recognition (ICPR).

[13] Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F. (2011). Lower upper
bound estimation method for construction of neural network-based prediction intervals.
IEEE transactions on neural networks, 22(3):337–346.

42 References

[14] Kroll, B., Schaffranek, D., Schriegel, S., and Niggemann, O. (2014). System modeling
based on machine learning for anomaly detection and predictive maintenance in industrial
plants. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA), pages 1–7.

[15] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–44.

[16] Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., and Hampapur, A. (2014). Im-
proving rail network velocity: A machine learning approach to predictive maintenance.
Transportation Research Part C: Emerging Technologies, 45:17 – 26. Advances in Com-
puting and Communications and their Impact on Transportation Science and Technologies.

[17] Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2016).
Efficient hyperparameter optimization and infinitely many armed bandits. CoRR,
abs/1603.06560.

[18] MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA.

[19] Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., and Shroff, G. (2016).
Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR, abs/1607.00148.

[20] Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. (2015). Long short term memory
networks for anomaly detection in time series. In ESANN.

[21] McLachlan, G. J., Lee, S. X., and Rathnayake, S. I. (2019). Finite mixture models.
Annual Review of Statistics and Its Application, 6(1):null.

[22] Molina, J., Isasi, P., Berlanga, A., and Sanchis, A. (2000). Hydroelectric power plant
management relying on neural networks and expert system integration. Engineering
Applications of Artificial Intelligence, 13(3):357 – 369.

[23] Raabe, J. (1985). Hydro power: the design, use, and function of hydromechanical,
hydraulic, and electrical equipment. VDI-Verlag.

[24] Reynolds, D. (2015). Gaussian Mixture Models, pages 827–832. Springer US, Boston,
MA.

[25] Sarlos, G., Haldi, P., and Verstraete, P. (2003). Systèmes énergétiques: offre et demande
d’énergie : méthodes d’analyse. Traité de génie civil de l’Ecole polytechnique fédérale
de Lausanne. Presses polytechniques et universitaires romandes.

[26] Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt, J. (1999). Support
vector method for novelty detection. In Proceedings of the 12th International Conference
on Neural Information Processing Systems, NIPS’99, pages 582–588, Cambridge, MA,
USA. MIT Press.

[27] Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons.

References 43

[28] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman
& Hall, London.

[29] Stanton, J. M. (2001). Galton, pearson, and the peas: A brief history of linear regression
for statistics instructors. Journal of Statistics Education, 9(3):null.

[30] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. CoRR, abs/1409.3215.

[31] Tax, D. M. and Duin, R. P. (2004). Support vector data description. Machine learning,
54(1):45–66.

[32] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. W., and Kavukcuoglu, K. (2016). Wavenet: A generative
model for raw audio. CoRR, abs/1609.03499.

[33] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

[34] Wang, S., Wang, K., and Li, Z. (2016/11). A review on data-driven predictive mainte-
nance approach for hydro turbines/generators. In 6th International Workshop of Advanced
Manufacturing and Automation. Atlantis Press.

[35] Åsnes, A., Willersrud, A., Kretz, F., and Imsland, L. (2018). Predictive maintenance
and life cycle estimation for hydro power plants with real-time analytics. In Predictive
maintenance and life cycle estimation for hydro power plants with real-time analytics.

Appendix A

How neural network actually learn

As we have seen in 2.2.1, neural networks learn by moving their parameters in the opposite
direction of the loss gradient by a small quantity γ. This procedure is described in 2.

Algorithm 2 The gradient descent algorithm

function GRADIENTDESCENT(L, Θ(0), γ)
repeat

Θ← Θ(0)

for θ ∈ Θ do
θ ← θ − γ ∂L(Θ)

∂θ

end for
until convergence
return Θ

end function

However, the main challenge is to compute the loss gradient, that is, the partial derivative
of the loss with respect to each parameter ∂L(Θ)

∂θ
. This is done with the most crucial algorithm

of deep learning, namely backpropagation, that consists in the following steps.

1. Perform forward propagation to compute each layer output a[l] for l = 1, . . . , L + 1,
where a[L+1] = ŷ(i).

2. Compute the error δ[L+1] = ∇aL ⊙ ϕ′[L+1](a[L+1]), where ∇aL =
 ∂L

∂a
[L+1]
j

D

j=1

.

3. Backpropagate the error δ[l] = (W [l+1]δ[l+1])⊙ ϕ′[l+1](a[l]) for l = 1, . . . , L.

4. Get the gradient
∂L

∂w
[l]
ij

= a
[l−1]
i δ

[l]
j ,

∂L
∂b

[l]
j

= δ
[l]
j .

Appendix B

Power plant plans

48 Power plant plans

TRANSFORMER

EXCITER

TURBINE

SYNCHRONOUS
GENERATOR-MOTOR

COUPLER

PUMP

TAILRACEINJECTOR

TURBINE
GUIDE BEARING

Fig. B.1 Transverse cross-section of FMHL+ groups.

49

1

2

11

9

10

8

5

6

7

4

3

GENERATOR SHAFT
EXCITER
ROTOR – COOLING WATER
ROTOR
STATOR
TURBINE GUIDE BEARING

7
8
9

10
11

1 PELTON TURBINE
RACK AND PLATFORM
INJECTOR
BUSBARS

2
3
4
5
6

COMBINED TRUST AND
BEARING SUPPORT

Fig. B.2 Transverse cross-section of Bieudron groups.

	Table of contents
	1 Introduction: Impoundment Hydropower Plants Need Smart Maintenance
	1.1 The criticality of hydropower plants
	1.2 From corrective maintenance to predictive maintenance
	1.3 Machine learning for predictive maintenance
	1.4 Document structure

	2 Theory: Machine Learning for Predictive Maintenance
	2.1 Problem framing
	2.1.1 Limitations of supervised learning
	2.1.2 Predictive maintenance as a semi-supervised anomaly detection task
	2.1.3 Classical algorithms for semi-supervised anomaly detection

	2.2 Semi-supervised deep learning for predictive maintenance
	2.2.1 An overview of Deep Learning
	2.2.2 Autoencoders
	2.2.3 Forecasting-based anomaly detection
	2.2.4 Prediction intervals to replace thresholds

	3 Practice: Predictive Maintenance in Hydropower Plants
	3.1 Introduction
	3.2 FMHL+ power plant
	3.2.1 Data-set and methods
	3.2.2 Results

	3.3 Bieudron power plant
	3.3.1 Data-set and methods
	3.3.2 Results

	4 Conclusion and Future Work
	References
	Appendix A How neural network actually learn
	Appendix B Power plant plans

